我们的生活离不开数学,我们的考试也离不开数学,我们在参加大大小小的考试的时候,总是会有数学的加入。对于数学,很多人感觉烦躁,有些人感觉兴奋,但是不管你以哪种心态看待数学,你都要努力备考,才能在考试走取得优异成绩。下面是对于GCT数学常见考点的介绍,希望对考生有所帮助。
1,几个易混概念:连续,可导,存在原函数,可积,可微,偏导数存在他们之间的关系式怎么样的?存在极限,导函数连续,左连续,右连续,左极限,右极限,左导数,右导数,导函数的左极限,导函数的右极限。
2,罗尔定理:设函数f(x)在闭区间[a,b]上连续(其中a不等于b),在开区间(a,b)上可导,且f(a)=f(b),那么至少存 在一点ξ∈(a、b),使得f′(ξ)=0。罗尔定理是以法国数学家罗尔的名字命名的。罗尔定理的三个已知条件的意义,⒈f(x)在[a,b]上连续表明 曲线连同端点在内是无缝隙的曲线;⒉f(x)在内(a,b)可导表明曲线y=f(x)在每一点处有切线存在;⒊f(a)=f(b)表明曲线的割线(直线 AB)平行于x轴;罗尔定理的结论的直几何意义是:在(a,b)内至少能找到一点ξ,使f′(ξ)=0,表明曲线上至少有一点的切线斜率为0,从而切线平 行于割线AB,与x轴平行
3,应用多次中值定理的专题:大部分的考研题,一般要考察你应用多次中值定理,最重要的就是要培养自己对这种题目的敏感度,要很快反映老师 出这题考哪几个中值定理,我的敏感性是靠自己多练习综合题培养出来的。我会经常会去复习,那样我对中值定理的题目早已没有那种刚学高数时的害怕之极。要想 对微分中值定理这块的题目有条理的掌握,看我这个总结定会事半功倍的。
4,泰勒公式展开的应用专题:我以前,以及我所有的同学,看到泰勒公式就哆嗦,因为咋一看很长很恐怖,瞬间大脑空白,身体失重的感觉。其实 在我搞明白一下几点后,原来的症状就没有了。第一:什么情况下要进行泰勒展开;第二:以哪一点为中心进行展开;第三:把谁展开;第四:展开到几阶?
5,对称性,轮换性,奇偶性在积分(重积分,线,面积分)中的综合应用:这几乎每年必考,要么小题中考,要么大题中要用,这是必须掌握的知 识,但是往往不是那么容易就靠做3,4个题目就能了解这知识点的应用到底有多广泛。我们做积分题,尤其多重积分和线面积分,死算也许能算出结果,但是要是能用以上性质,那可真是三下五除二搞定,这方面的感觉相信大家有过,可是或许仅仅是昙花一现,因为你做出来了以为以后就一定会在相似的题目中用,其实不然,因为仅仅靠几道题目很大程度上不能给你留下太深刻的印象,下次轮到的时候或许就是考场上了,你可能顿时苦思冥想,最终还是选择了最傻的办法,浪费了宝贵时间。说这些其实就是说明,考场上的正常或超常发挥是建立在平时踏实做,见识广,严要求的基础上。
对于GCT数学考点啥,你是否已经了解了呢?虽然数学对很多人来说都十分的困难,但是我们一定要有迎难而上的精神,这样才能在这个社会中立足。如果你有更多关于在职联考的问题,可以在线咨询在职研究生网。